Harmonic series (mathematics)

From Academic Kids

See harmonic series (music) for the (related) musical concept.

In mathematics, the harmonic series is the infinite series

<math>\sum_{k=1}^\infty \frac{1}{k} =

1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots <math>

It is so called because the wavelengths of the overtones of a vibrating string are proportional to 1, 1/2, 1/3, 1/4, ... .

It diverges, albeit slowly, to infinity. This can be proved by noting that the harmonic series is term-by-term larger than or equal to the series

<math>\sum_{k=1}^\infty 2^{-\lceil \log_2 k \rceil} \! =

1 + \left[\frac{1}{2}\right] + \left[\frac{1}{4} + \frac{1}{4}\right] + \left[\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right] + \frac{1}{16}\cdots <math>

<math> = \quad\ 1 +\ \frac{1}{2}\ +\ \quad\frac{1}{2} \ \quad+ \ \qquad\quad\frac{1}{2}\qquad\ \quad \ + \ \quad\ \cdots <math>

which clearly diverges. Even the sum of the reciprocals of the prime numbers diverges to infinity (although that is much harder to prove; see proof that the sum of the reciprocals of the primes diverges). The alternating harmonic series converges however:

<math>\sum_{k = 1}^\infty \frac{(-1)^{k + 1}}{k} = \ln 2.<math>

This is a consequence of the Taylor series of the natural logarithm.

If we define the n-th harmonic number as

<math>H_n = \sum_{k = 1}^n \frac{1}{k}<math>

then Hn grows about as fast as the natural logarithm of n. The reason is that the sum is approximated by the integral

<math>\int_1^n {1 \over x}\, dx<math>

whose value is ln(n).

More precisely, we have the limit:

<math> \lim_{n \to \infty} H_n - \ln(n) = \gamma<math>

where γ is the Euler-Mascheroni constant.

It has been proven that:

  1. The only Hn that is an integer is H1.
  2. The difference Hm - Hn where m>n is never an integer.

Jeffrey Lagarias proved in 2001 that the Riemann hypothesis is equivalent to the statement

<math>\sigma(n)\le H_n + \ln(H_n)e^{H_n} \qquad \mbox{ for every }n\in\mathbb{N}<math>

where σ(n) stands for the sum of positive divisors of n. (See An Elementary Problem Equivalent to the Riemann Hypothesis, American Mathematical Monthly, volume 109 (2002), pages 534--543.)

The generalised harmonic series, or p-series, is (any of) the series

<math>\sum_{n=1}^{\infty}\frac{1}{n^p} <math>

for p a positive real number. The series is convergent if p > 1 and divergent otherwise. When p = 1, the series is the harmonic series. If p > 1 then the sum of the series is ζ(p), i.e., the Riemann zeta function evaluated at p.

This can be used in the testing of convergence of series.

See also

es:Serie armónica (matemáticas) nl:Harmonische rij pl:Szereg harmoniczny pt:Série harmónica (matemática)

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools