Sinc function

From Academic Kids

 The sinc function sinc(x) from x = −8π to 8π.
The sinc function sinc(x) from x = −8π to 8π.

In mathematics, the sinc function (for sinus cardinalis), also known as the interpolation function, filtering function or the first spherical Bessel function <math>j_0(x)<math>, is the product of a sine function and a monotonically decreasing function. It is defined by:


= \left\{ \begin{matrix} \frac{\sin(x)}{x}&:~x\ne 0 \\ \\ 1 &:~x=0 \end{matrix} \right. <math>

The sinc function is sometimes defined as simply sin(x)/x. The function sin(x)/x has a removable singularity at zero, so that, by L'H˘pital's rule we have:

<math>\lim_{x\to 0} \frac{\sin(x)}{x}=1.\,<math>

The above definition for the sinc function is preferred since it removes this singularity and yields a function which is analytic everywhere.

The normalized sinc function is defined as:

<math>\mathrm{sinc}_N(x) = \textrm{sinc}(\pi x)\,<math>

and, as its name implies, is normalized to unity

<math>\int_{-\infty}^\infty \mathrm{sinc}_N(x)\,dx = 1.<math>

This integral must necessarily be regarded as an improper integral; it cannot be taken to be a Lebesgue integral because

<math>\int_{-\infty}^\infty \left|\mathrm{sinc}_N(x)\right|\,dx = \infty.<math>

The normalized sinc function also has the important infinite product

<math>\mathrm{sinc}_N(x) = \prod_{n=1}^\infty \left(1 - \frac{x^2}{n^2}\right).<math>

We also have an expression in terms of the gamma function, as

<math>\mathrm{sinc}_N(x) = \frac{1}{\Gamma(1+x)\Gamma(1-x)} = \frac{1}{x! (-x)!}.<math>

Because of its usefulness, the normalized sinc function is sometimes simply called the sinc function and written sinc(x).

The sinc function oscillates inside an envelope of ±1/x. The Fourier transform of the sinc function can be expressed in terms of the rectangular function:

<math>\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty \textrm{sinc}(x)e^{-ikx}\,dx=


In the language of distributions, the sinc function is related to the delta function δ(x) by

<math>\lim_{a\rightarrow 0}\frac{1}{\pi a}\textrm{sinc}(x/a)=\delta(x).<math>

This is not an ordinary limit, since the left side does not converge. Rather, it means that

<math>\lim_{a\rightarrow 0}\int_{-\infty}^\infty \frac{1}{\pi a}\textrm{sinc}(x/a)\varphi(x)\,dx
          =\int_{-\infty}^\infty\delta(x)\varphi(x)\,dx = \varphi(0),


for any smooth function <math>\varphi(x)<math> with compact support.

In the above expression, as a  approaches zero, the number of oscillations per unit length of the sinc function approaches infinity. Nevertheless, the sinc function always oscillates inside an envelope of ±1/x, regardless of the value of a. This contradicts the informal picture of δ(x) as being zero for all x except at the point x=0 and illustrates the problem of thinking of the delta function as a function rather than as a distribution. A similar situation is found in the Gibbs phenomenon.

Applications of the sinc function are found in digital signal processing, communication theory, control theory, and optics.

See also


Academic Kids Menu

  • Art and Cultures
    • Art (
    • Architecture (
    • Cultures (
    • Music (
    • Musical Instruments (
  • Biographies (
  • Clipart (
  • Geography (
    • Countries of the World (
    • Maps (
    • Flags (
    • Continents (
  • History (
    • Ancient Civilizations (
    • Industrial Revolution (
    • Middle Ages (
    • Prehistory (
    • Renaissance (
    • Timelines (
    • United States (
    • Wars (
    • World History (
  • Human Body (
  • Mathematics (
  • Reference (
  • Science (
    • Animals (
    • Aviation (
    • Dinosaurs (
    • Earth (
    • Inventions (
    • Physical Science (
    • Plants (
    • Scientists (
  • Social Studies (
    • Anthropology (
    • Economics (
    • Government (
    • Religion (
    • Holidays (
  • Space and Astronomy
    • Solar System (
    • Planets (
  • Sports (
  • Timelines (
  • Weather (
  • US States (


  • Home Page (
  • Contact Us (

  • Clip Art (
Personal tools